Системы линейных уравнений

Что такое Системы линейных уравнений и что это означает?, подробный ответ и значение читайте далее, после краткого описания.

Ниже представлен реферат на тему Системы линейных уравнений, который так же можно использовать как сочинение.

Данную работу вы можете скачать бесплатно ниже по ссылке, но если вам нужен реферат, сочинение, изложение, доклад, лекция, проект, презентация, эссе, краткое описание, биография, контрольная, самостоятельная, курсовая, экзаменационная или дипломная работа, с вашими конкретными требованиями, вы можете заказать её выполнение у нас в короткие сроки и недорого.

Мы команда учителей и репетиторов со стажем работы более 20 лет. За это время нами проверено и написано более 100 000 разнообразных работ и тестов. Поверьте нам, мы знаем как удивить вашего учителя или приёмную комиссию, с нами вы обречены на получение отличной оценки. Удачи вам в учёбе!

1. Критерий совместности

Система линейных уравнений имеет вид:

a11 x1 + a12 x2 + ... + a1n xn = b1

a21 x1 + a22 x2 + ... + a2n xn = b2 (5.1)

... ... ... ... ... ... ... ... ... ... ...

am1 x2 + am2 x2 +... + amn xn = bm

Здесь аij и bi (i = ; j = ) - заданные, а xj - неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:

AX = B, (5.2)

где A = (аij ) - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X = (x1 , x2 ,..., xn )T ,

B = (b1 , b2 ,..., bm )T - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi .

Упорядоченная совокупность n вещественных чисел (c1 , c2 ,..., cn ) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x1 , x2 ,..., xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1 , c2 ,..., cn )T такой, что AC ≡ B.

Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.

Матрица

à = ,

образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Вопрос о совместности системы (5.1) решается следующей теоремой.

Теорема Кронекера- Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и Ã совпадают, т.е.

r(A) = r(Ã) = r.

Для множества М решений системы (5.1) имеются три возможности:

1) M = Ø (в этом случае система несовместна);

2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной);

3) M состоит более чем из одного элемента (тогда система называется неопределенной). В третьем случае система (5.1) имеет бесчисленное множество решений.

Система имеет единственное решение только в том случае, когда

r(A) = n. При этом число уравнений - не меньше числа неизвестных (m ≥ n); если m > n, то m-n уравнений являются следствиями остальных. Если 0 < r < n, то система является неопределенной.

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:

a11 x1 + a12 x2 + ... + a1n xn = b1

a21 x1 + a22 x2 + ... + a2n xn = b2 (5.3)

... ... ... ... ... ... ... ... ... ...

an1 x2 + an2 x2 + ... + ann xn = bn

Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера;3) матричным методом.

2. Метод Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

3. Формулы Крамера

Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А

Δ = det (aij )

и n вспомогательных определителей Δi (i = ), которые получаются из определителя Δ заменой i-го столбца столбцом свободных членов.

Формулы Крамера имеют вид:

Δ · xi = Δi (i = ). (5.4)

Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:

xi = Δi / Δ.

Если главный определитель системы Δ и все вспомогательные определители Δi = 0 (i = ), то система имеет бесчисленное множество решений. Если главный определитель системы Δ = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

4. Матричный метод

Если матрица А системы линейных уравнений невырожденная, т.е.

det A ≠ 0, то матрица А имеет обратную, и решение системы (5.3) совпадает с вектором C = A-1 B. Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X = C, C = A-1 B называют матричным способом решения системы, или решением по методу обратной матрицы.

Похожие материалы

Об эволюции звезд
С тех пор, как человек впервые осознанно взглянул на небо, он не переставал задавать себе вопрос:
Минимальные формы булевых многочленов
Булевы алгебры решетки особого типа, применяемые при исследовании логики (как логики человеческого
История математических констант - числа "пи" и "е"
Письменная история числа пи, происхождение его обозначения и погоня за десятичными знаками.
Математические модели в экономике
Факультет дистанционного обучения Томский государственный университет систем управления и
Болезнь Рейно
заболевание, характеризующееся приступообразной ишемией пальцев кистей или стоп вследствие